Quality pasture silage
Five easy steps
Acknowledgements
Gardiner Dairy Foundation invests for a strong, prosperous and sustainable dairy industry. As an independent and flexible supporter of the Victorian dairy industry, we moved quickly to contribute funding towards the state-wide, collaborative industry response to the drop in milk price in April 2016. Part of our $1.3 million commitment to that response is to proudly fund this roll-out of this Quality pasture silage – Five easy steps. We believe that maximising the performance of a farm’s feedbase underpins farm business profitability, which in turn, underpins the entire $13 billion industry.

Portions of this booklet have been adapted from the TopFodder Successful Silage manual.

Disclaimer
Whilst all reasonable efforts have been taken to ensure the accuracy of Quality pasture silage – Five easy steps, use of the information contained herein is at one's own risk. To the fullest extent permitted by Australian law, Dairy Australia disclaims all liability for any losses, costs, damages and the like sustained or incurred as a result of the use of or reliance upon the information contained herein, including, without limitation, liability stemming from reliance upon any part which may contain inadvertent errors, whether typographical or otherwise, or omissions of any kind.

© Dairy Australia Limited 2016. All rights reserved.

ISBN 978-1-925347-10-4
Introduction

Making and feeding high quality silage with lower fibre levels encourages higher feed intakes and better cow performance. This booklet highlights five easy steps for making high quality temperate pasture silage. This booklet complements the *Ryegrass – spring grazing management, paddock guide*.

Key messages

Making high quality silage
› Cut pastures early
› Wilt quickly and harvest as soon as possible
› Compact forage as densely as possible
› Seal quickly and well to exclude air
› Repair holes immediately using specific silage tape.
Cut early in the season

For maximum silage quality, cut pastures when they are at or near canopy closure. This is also the optimum stage of growth for grazing in spring.

Providing pasture is at or only slightly past grazing height, and harvested in good weather conditions, milk production will be only marginally less than if the same pasture had been grazed by the cows. Wilting rate of the mown pasture has a big impact on silage quality. The time of day that pasture is cut impacts on the wilting rate.

The following should be considered when deciding on mowing time to aid rapid drying but to avoid overdrying:

› Mow after dew has lifted.
› Match mowing and harvesting operations so that mown material is not left unharvested for lengthy periods.
› Reduce wilting periods for forages, such as legumes and young, leafy plants.
› Delay mowing until mid to late afternoon to reduce the risk of overdrying the forage during hot, dry and windy weather.
› Stagger mowing and narrow the swath width if there is a real risk of over-drying.
Figure 2 Mowing
Wilt and harvest quickly

Have the forage in the pit or bale within 24–48 hours, if possible

Wilt rapidly to the target dry matter (DM) (baled silage 40–50% and pit silage 32–38%) to reduce potential dry matter and quality losses. Several strategies that can increase wilting rates:

› Mow crops at canopy closure (lighter crops with more leaf and less stem).
› Use a mower-conditioner with flail or tynes.
› Follow the mower with a tedder to spread the forage. Ted within 0.5–2 hours after mowing while plant stomata are still open, if possible, to substantially increase rate of wilting.
› Leave the swath of the conditioned forage as wide as possible (moisture evaporates quicker from thin, wide swaths).
› Do not over wilt – field losses increase and silage is harder to compact.
› Additives are available to improve fermentation if wilting conditions are poor.
› Inoculants may also improve silage quality and animal production.
The target dry matter for pit silage is between 32–38% and for baled silage a little dryer at 40–50%.

Use Table 2 and 3 (page 16 and 18) to identify exact target DM for your crop.
The ‘hand squeeze’ method for estimating dry matter

Hand squeezing is a quick and easy method to use in the field to estimate dry matter and is more accurate than ‘wringing’ a handful of unchopped grass.

1. Collect representative samples of the forage.
2. Mix the samples thoroughly and take a subsample.
3. Cut the forage into 1–2 cm lengths.
4. Tightly squeeze a handful into a ball for about 30 seconds.
5. Quickly open hand.
6. Estimate DM content from Table 1 (below).
Table 1 Estimation of dry matter content from the hand squeeze method

<table>
<thead>
<tr>
<th>DM content</th>
<th>Condition of the sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below 25%</td>
<td>Free moisture runs through fingers as material is being squeezed. When pressure is released the ball of chopped forage holds its shape. A lot of free moisture is present on hand.</td>
</tr>
<tr>
<td>25%–30%</td>
<td>Ball just holds its shape. No free moisture expressed. Hand moist.</td>
</tr>
<tr>
<td>30%–40%</td>
<td>Ball falls apart slowly. No free moisture. Little or no moisture on hand.</td>
</tr>
<tr>
<td>Over 40%</td>
<td>Ball springs apart quickly.</td>
</tr>
</tbody>
</table>
Compact stacks and make bales as dense as possible

The better the compaction, the less air will be trapped in the stack or bale resulting in a higher quality silage

For bulk stacks:
› chop material short (10–30mm)
› spread the forage thinly (150mm) to ensure thorough compaction
› roll slowly to allow the tractor weight to compact the forage.

For baled silage:
› set bale density as dense as possible on the baler
› slower baling will increase bale density
› chopping balers (knives) can increase density by 8–15 per cent
› ensure feedout equipment can handle shorter chopped bale silage.
Figure 6 Wrapped silage bales
Seal airtight as soon as possible after harvesting

Seal stacks, don’t just cover them

› Finish rolling immediately after harvest is completed. Avoid rolling the next morning as this just ‘pumps’ more oxygen into the stack. Rolling should keep up with forage delivery from the paddock.

› Seal pits or stacks as soon as harvest is complete.

- If leaving overnight minimise air getting into the stack by placing plastic on the stack and weighing down the edges.

- Finish weighing down the stack next morning and ensure seals are airtight.

› For an airtight seal use gravel bags, filled with pea gravel or washed sand along bunker walls and stack surface. Even a double row of tyres around the perimeter does not achieve an airtight seal.

Figure 7 Sealing stacks with bags
For baled silage:

› Apply at least four layers of film to individually stretch wrapped bales.

› Apply six layers:
 - if placing on stiff stubble, e.g. cereal
 - for stalky crops e.g. lucerne
 - if transporting
 - if wishing to store for up to two years.

› Apply at least six layers on continuous in-line wrapped bales.

› Minimise damage to stretch wrap by wrapping at the storage site or use specialist equipment to transport bales to storage.

› If a white/grey mould is present in your silage, air has been or is present and should be prevented in future.
Repair holes immediately using specific silage patching tape

Maintain silage quality by repairing holes as soon as possible

› Ensure the area to be patched is clean and dry.
› Use specific silage repair tape of similar colour to the holed plastic. This minimises the difference in contracting and expanding in hot/cool conditions and stops the seal leaking.
› Cut tape to length before applying.

Figure 8 Silage bales
Figure 9 Maintain quality by repairing holes with silage tape of the same colour
Resources

Table 2 Production potential, management requirements and suitability of pasture and forage crops for silage production

<table>
<thead>
<tr>
<th>Crop</th>
<th>Perennial ryegrass and clover</th>
<th>Forage ryegrass</th>
<th>Other temperate perennial grasses and clover</th>
<th>Pasture legumes & legume dominant pastures</th>
<th>Lucerne</th>
<th>Kikuyu & other tropical grasses</th>
<th>Forage sorghum</th>
<th>Millet (several types)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth stage at harvest</td>
<td>Canopy closure 1st head emerge on ryegrass</td>
<td>10–20% head emergence</td>
<td>Stem elongation of grass component</td>
<td>Early to mid flowering</td>
<td>Very early (<10% flower)</td>
<td>25–35 days growth</td>
<td>1 m high</td>
<td>Pennisetums: 1m high Japanese pre-boot</td>
</tr>
<tr>
<td>Potential yield</td>
<td>2.5–4.0</td>
<td>2.5–4.5</td>
<td>2.0–4.0</td>
<td>2.0–3.5</td>
<td>1.5–3.2</td>
<td>2.0–3.5</td>
<td>2.0–5.0</td>
<td>2.0–5.0</td>
</tr>
<tr>
<td>Potential number of cuts per year</td>
<td>1–2</td>
<td>1–2</td>
<td>1</td>
<td>1–2</td>
<td>4–7</td>
<td>1–3</td>
<td>1–4</td>
<td>1–3</td>
</tr>
<tr>
<td>Wilting requirement</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Target range DM content (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.5–11</td>
<td>9.5–11</td>
<td>9.5–10.5</td>
<td>9.5–11.5</td>
<td>9–10.5</td>
<td>8.5–10</td>
<td>9–9.5</td>
<td>9–10</td>
</tr>
<tr>
<td>------------------</td>
<td>--------</td>
<td>--------</td>
<td>----------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>ME<sup>3</sup> (MJ/kg DM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crude protein<sup>3</sup> (% DM)</td>
<td>12–22</td>
<td>12–20</td>
<td>12–16</td>
<td>14–26</td>
<td>18–24</td>
<td>12–18</td>
<td>7–17</td>
<td>10–18</td>
</tr>
<tr>
<td>Ensilability<sup>4</sup></td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Suitable for chopped bulk silage</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Suitable for baled silage</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes<sup>5</sup></td>
<td>Yes<sup>5</sup></td>
</tr>
</tbody>
</table>

Notes

1. High density legumes have potential to produce higher yields (3.5–7.0 t/ha) than pasture legumes sown at the usual rates. Management requirements for silage production and potential for forage quality are as for pasture legumes.

2. Yields and potential number of cuts are for crops cut at the optimum growth stage. Yields at the higher end of the range can be obtained with irrigated crops or crops grown under ideal growing conditions.

3. The ME (metabolisable energy) and crude protein values shown are in the range that is achievable with good management.

4. Ensilability: likelihood of achieving a good silage fermentation without wilting or additives (*Low **Medium ***High).

5. Baling is not recommended for tall, rank crops unless the baler is fitted with knives.

Source: *TopFodder Silage Note no. 4*
Table 3 Yield and quality potential of crops grown for silage production, identifying requirements to ensure quality silage

<table>
<thead>
<tr>
<th>Crop characteristics</th>
<th>Maize</th>
<th>Whole crop winter cereal</th>
<th>Wheat & barley</th>
<th>Whole crop winter cereal/legume mixtures</th>
<th>Grain sorghum</th>
<th>Sweet sorghum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth stage at harvest</td>
<td>Milk line score 2–3</td>
<td>Boot to flowering</td>
<td>Boot or mid dough</td>
<td>Boot to dough of cereal component</td>
<td>Milky dough (middle of head)</td>
<td>Head emergence to dough</td>
</tr>
<tr>
<td>Potential number of cuts/year</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Wilting requirement</td>
<td>no</td>
<td>Boot yes/dough no</td>
<td>Yes</td>
<td>no</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>Target range DM content(%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Baled</td>
<td>NR</td>
<td>35–50</td>
<td>35–50</td>
<td>NR</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>ME2 (MJ/kg DM)</td>
<td>10–11</td>
<td>9–10.5</td>
<td>9.5–11</td>
<td>9.5–10.5</td>
<td>9–10</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>----------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Crude protein(^2) (% DM)</td>
<td>4.5–8.5</td>
<td>6–16</td>
<td>8–18</td>
<td>6–9.5</td>
<td>4–8</td>
<td></td>
</tr>
<tr>
<td>Ensilability(^3)</td>
<td>3***</td>
<td>Boot**/dough***</td>
<td>**</td>
<td>***</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>Suitable for chopped bulk silage</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Suitable for baled silage</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td></td>
</tr>
</tbody>
</table>

Notes

1. Yields at the higher end of the range can be obtained with irrigated crops or crops grown under ideal growing conditions.
2. These ME (metabolisable energy) and crude protein levels are achievable with good management.
3. Ensilability is the likelihood of achieving a good silage fermentation without wilting or additives (*Low **Medium or ***High).

Source: *TopFodder Silage Note no. 4*
Further support
For more support on grazing management contact your RDP

Dairy NSW
Ph: 02 9351 1737
dairynsw.com.au

Murray Dairy
Ph: 03 5833 5312
murraydairy.com.au

GippsDairy
Ph: 03 5624 3900
gippsdairy.com.au

DairySA
Ph: 08 8766 0127
dairysa.com.au

Subtropical Dairy
Ph: 0431 197 479
dairyinfo.biz

WestVic Dairy
Ph: 03 55571000
westvicdairy.com.au

DairyTas
Ph: 03 6432 2233
dairytas.com.au

Western Dairy
Ph: 0429 110 485
westerndairy.com.au